Coordination in multiagent reinforcement learning systems by virtual reinforcement signals
نویسندگان
چکیده
This paper presents a novel method for on-line coordination in multiagent reinforcement learning systems. In this method a reinforcement-learning agent learns to select its action estimating system dynamics in terms of both the natural reward for task achievement and the virtual reward for cooperation. The virtual reward for cooperation is ascertained dynamically by a coordinating agent who estimates it from the change in degree of cooperation of all agents using a separate reinforcement learning. This technique provides adaptive coordination, requires less communication and ensures agents to be cooperative. The validity of virtual rewards for convergence in learning is verified, and the proposed method is tested on two different simulated domains to illustrate its significance. The empirical performance of the coordinated system compared to the uncoordinated system illustrates its advantages for multiagent systems.
منابع مشابه
A Multiagent Reinforcement Learning algorithm to solve the Community Detection Problem
Community detection is a challenging optimization problem that consists of searching for communities that belong to a network under the assumption that the nodes of the same community share properties that enable the detection of new characteristics or functional relationships in the network. Although there are many algorithms developed for community detection, most of them are unsuitable when ...
متن کاملHierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP- MD) and a MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph
This paper presents the research and development of a hybrid neuro-fuzzy model for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent neuro-fuzzy multiagent systems that use MultiAgent Reinforcement Learning...
متن کاملMultiagent Coordination in Cooperative Q-learning Systems
Many reinforcement learning architectures fail to learn optimal group behaviors in the multiagent domain. Although these coordination difficulties are often attributed to the non-Markovian environment created by the gradually-changing policies of concurrently learning agents, a careful analysis of the situation reveals an underlying problem structure which can cause suboptimal group policies ev...
متن کاملImproving on the reinforcement learning of coordination in cooperative multi-agent systems
We report on an investigation of reinforcement learning techniques for the learning of coordination in cooperative multiagent systems. These techniques are variants of Q-learning (Watkins, 1989) that are applicable to scenarios where mutual observation of actions is not possible. To date, reinforcement learning approaches for such independent agents did not guarantee convergence to the optimal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- KES Journal
دوره 11 شماره
صفحات -
تاریخ انتشار 2007